
CMPSCI 677 Distributed and Operating Systems Spring 2023

Lecture 2: February 7

Lecturer: Prashant Shenoy Scribe: Sushrita Yerra (2024), Hetvi Shastri (2023), Steven
(Jiaxun) Tang (2022),

Roy Chan (2019), Phuthipong Bovornkeeratiroj (2018)

Note: Please make sure that Gradescope is working for you.

Note: There is a Career Fair on February 24.

Reminder: No using laptops or phones during class.

2.1 Architectural Styles

Most distributed systems can be described by one of the architectures discussed in this lecture. It is important
to understand the differences between them so that we can decide on the architecture before implementing
a new system.

2.1.1 Layered Architectures

Figure 2.2: Layered Design

A layered architecture looks like a stack, as seen in the figure above. The system is partitioned into a
sequence of layers, and each layer can communicate with the layer above or below. For example, layer i
can communicate with layer i + 1 and layer i − 1 but not the others (e.g. layer i + 2). This is the main
restriction of a layered design. The layered architecture is especially common in web applications where this
architecture is divided across the client and the server. Common instances of these systems are multitiered
architectures and network stacks. A 3-tiered web application typically would have the HTTP/Web Server,
Middle Tier: Application Logic, Third Tier: Database

2-1



2-2 Lecture 2: February 7

2.1.2 Object-Based Style

Figure 2.3: Object-based Style

In this architecture, each component corresponds to an object. Unlike in standard OOP programming,
objects can be distributed across multiple machines. As shown in the figure above, the system can have
many objects. Each object has its state and exposes its interface, which other objects can use. All objects
can communicate with any other object without restriction, making this a “generalized” version of the layered
design. Components interact with each other via remote procedure calls. We will discuss RPC in Lecture 3.

2.1.3 Event-Based Architecture

Figure 2.4: Event-based Architecture

An event-based architecture has many components that communicate using a publisher-subscriber (pub-sub)
model via an event bus instead of direct communication. In this architecture, a component that sends an
event to the event bus is a publisher, and a component that subscribes to certain types of events on the event
bus is a subscriber. Each component will work asynchronously. After a component sends information by
publishing an event, the event bus then checks for subscriptions matching the recipient information enclosed
in the newly published event. If one or more matching subscriptions are found, the event bus will deliver
the data to the appropriate component(s). There are many kinds of event buses, e.g., memory-based or
disk-based.

Question (Student): Would the publisher and subscriber have different data structures? Answer (In-
structor): The event that’s being published and consumed would have a defined structure, but the
event’s mapping to internal data structures is irrelevant, and the publisher/subscriber can have their own
representation internally.

Question (Student): Is the implementation of an event bus like a queue? Answer (Instructor): Queue
based implementations(Message Queuing systems) are common for designing systems like this. A new event
is added to the queue, and its recipients can be notified about this event. Ex of messaging queuing systems:
RabbitMQ



Lecture 2: February 7 2-3

Question (Student): Can you do 1:1 communication in Pub/Sub system? Answer (Instructor): In
Pub/Sub systems, when an event is produced, there is no recipient to which it is addressed. The event
bus delivers these events to the subscribers. We can emulate the 1:1 behavior by having one producer and
subscriber, but it’s not technically 1:1 communication.

Question (Student): Can the event bus be a single point of failure? Answer (Instructor): The
system can be designed in a way that it’s reliable and not a single point of failure.

Question (Student): Is the event bus access transparent? Answer (Instructor): Components are not
aware of the events being handled inside.

2.1.4 Shared Data Space

Figure 2.5: Shared Style

The shared data space architecture has a shared data space which is like a physical bulletin board. A
component posts information and some components may come along later and retrieve the information.
Unlike in the event-based architecture, data posted in the shared data space have no specific information
about the recipient. Therefore, posted data can be in the shared data space for a while until some component
actively retrieves this data. From this sense, the components in the data-space architecture are loosely
coupled in space and time. Notice that the data that is published is not addressed to anyone in particular
and that the data may not be received in real time.

Question (Student): What does persistent mean in this context? Answer (Instructor): Persistent
here means that the data is going to reside in the shared data space for an arbitrary amount of time.
Technically, this means data is stored on disk.

2.1.5 Resource-Oriented Architecture (ROA)

A resource-oriented architecture exposes resources for clients to interact with. Resources have names and
related operations. Representational State Transfer (REST) is a common implementation of this architecture.
It has a standard naming scheme in which all services offer the same interface (GET/PUT/POST/DELETE).
No client state is kept, which means each request is logically decoupled. Since users often interact with the
resources of a web service, exposing applications as resources makes it easy to implement descriptive APIs.
For example, if you want to query/create/delete/update an object in the Amazon Object Storage Service
S3, you just need to send GET/PUT/DELETE/POST requests to https://{{BUCKET_NAME}}.s3.aws.

com/{{OBJECT_NAME}}.

Question (Student): Is it secure to use HTTP for RoA? Answer (Instructor): You can use HTTPs
to secure the communication which is built over HTTP.



2-4 Lecture 2: February 7

Question (Student): Is the difference between resource-oriented and object-oriented just that the former
uses HTTP? Answer (Instructor): Yes, that’s precisely it. RoA requires that the objects communicate
via HTTP with a standard naming scheme(URL).

Question (Student): What does it mean to say messages should be fully described? Answer (In-
structor): This architecture does not keep any state(state-less), so every request needs to contain all the
information needed for it to be complete.

2.1.6 Service-Oriented Architecture

A service-oriented architecture exposes components as services. Each component provides a service. Services
communicate with each other to implement an application. Micro-services are one modern implementation
of a service-oriented architecture.

Question (Student): What is the difference between SOA and ROA?

Answer (Instructor): SOA exposes components as services and ROA exposes components as resources.
ROA requires services to connect via HTTP, while SOA doesn’t enforce the protocol used. ROA is stateless
and SOA can be stateful. ROA is also newer and is better for using HTTP.

The following are comparisons between OOA, ROA, and SOA.

Figure 2.6: OOA vs. ROA vs. SOA

Question (Student): Are object replies cacheable? Answer (Instructor): In RoA and SoA since the
responses are HTTP or web, they are cacheable. OOA is not designed for caching.

Question (Student): How does cacheing rely on protocol? Answer (Instructor): Cache can be built
for OOA, but it’s not designed for it, but for the web, it comes as an additional feature.

Question (Student): What does marshalling parameters mean? Answer (Instructor): When commu-
nication is done over a network, the parameters must be sent in a standardized fashion to handle compatibility
issues. Converting data to this standardized form is called marshaling.

Question (Student): Is resource oriented a superset of service-oriented? Answer (Instructor): There
are different flavours of architectures.



Lecture 2: February 7 2-5

2.2 Client-Server Architecture

This is the most popular architecture. The client sends requests to the server, and then the server sends
a response back to the client. Remember that this does not necessarily refer to the hardware. The terms
“client” and “server” refer instead to the piece of software that requests the service or provides the service
resp. After the client sends a request, it waits while the server processes the request. In the figure below,
you can see the respective parties waiting when there is a dotted line.

Figure 2.6: Client-Server Architecture

Developers need to make design choices about which service should be put into which layer. Let us look at
an example to see how we would implement this.

2.2.1 Search Engine Example

Figure 2.7: Search Engine Example

Take Google search as an example. When you type something into the search box, you are interacting with
the UI level of Google search. Then, the UI will send your input to a query generator at the processing
level. The query generator translates your query expression into database queries and accesses the database
located at the data level which responds with relevant results. A ranking algorithm in the processing level
takes the query results, ranks them, and passes the result to the HTML generator at the same level. The
HTML generate then generates the page and is sent back to the UI layer and will be rendered by the browser
as a webpage.

The important part is understanding the tiers and how they interact with each other in a distributed
application. Other details like indexes and crawlers are not the components we are considering here.



2-6 Lecture 2: February 7

Question (Student): Where would the caching be done for commonly used queries? Answer (Instruc-
tor): It’s typically in front of the database layer. On a cache miss, the database layer computes the
query.

2.2.2 Multitiered Architectures

Figure 2.8: Client Server Choices

We see various “splits” of the 3 layers between client and server represented by the dotted line. The layer(s)
above the line are on the client, and the layer(s) below the line are on the server. As you can see, there are
many choices in how you split the implementation.

A typical implementation of (a) is a traditional browser-based application (e.g. SPIRE). The webpage is
constructed from the server side and rendered in the browser. A typical implementation of (b) is a single-
paged web application. The server does not render pages but only provides APIs for data retrieval. The
browser will send AJAX requests to call those APIs. A typical implementation of (c) is a smartphone app,
where the application’s backend is usually split between the device and the server. Desktop applications
usually follow (d) where only the database is on the server, and the client is just accessing data. A smartphone
app or a whole app that exists on a client also follows this architecture. Lastly, (e) improves on (d). Data is
cached or stored locally. For example, Google’s offline mail caches a small subset of the user’s email locally.
The choice of which architecture to use depends on many factors, e.g., what you want to do, how much
resources the client has, etc.

Question (Student): Is the (e) in the above figure a cached application? Answer (Instructor): It
could be cached where you have a database cache that stores something, or it could even be that some part
of the database is on the client and some part of the database on the server.



Lecture 2: February 7 2-7

2.2.3 Three-tier Web Application

Figure 2.9: Three-tier Web Application

The three-tier web application architecture is a very popular architecture choice. It’s an example of the
layered architecture discussed above. The client’s browser sends an HTTP request to an HTTP server (e.g.
apache). The HTTP server then sends the request to the app server (e.g. a Python backend) for processing
in which it may create a query to the database server. The database returns data to the app server that
sends the results to the HTTP server which then forwards it to the browser. The sequential nature of this
architecture is a type of layer architecture seen earlier in the search engine example.

These tiered architectures can use more or fewer than 3 layers depending on their setup. Modern web
applications will take the Application tier and split it into multiple tiers. A very common architecture for
web apps uses HTTP for the user, PHP or J2EE for the app server, and then a database for the bottom
tier. The divide between user and server is not set in stone as we saw in the previous section.

Question (Student): Does every spectrum from (a)-(e) in fig 2.8 follows the working mentioned in fig
2.9? Answer (Instructor): This working shows how request flows and processing is done. According to
system, it could be possible that it does not go through all the tiers.

2.2.4 Edge-Server Systems

Figure 2.10: Edge Server

Unlike traditional client-server architecture, edge server systems implement a client-proxy-server architecture.
As the name suggests, there is an extra component in between. The proxy (labeled as the edge server in the



2-8 Lecture 2: February 7

figure above) sees if it can process the client’s request without having to go to the server (i.e. the Content
provider). If not, the proxy forwards the request to the real server. The advantage of this approach is that
the main server load is reduced, and data is moved to servers closer to the user so that the access latency
will be greatly reduced. Many other proxy services can be provided in addition to caching. Edge computing
goes one step further than simply providing a data cacheby allowing code execution in the edge server.

Question (Student): Is the edge server a replica of the main server or runs a subset of the functionality
of the main server? Answer (Instructor): Either can be true, it’s an application choice.

2.3 Decentralized Architectures (Module 3)

Decentralized architectures are also known as peer-to-peer (P2P) systems. Unlike the client-server architec-
ture, each node (peer) can be a client, server, or both with all nodes being mostly equal. That is, we are
removing the distinction between client and server. P2P systems can also come be structured or unstructured
systems. A peer can provide services and request services. Peers can also come and go at any time, unlike
a server which must be there all the time. Ex: Bit torrent system for sharing files.

We will introduce a structured peer-to-peer system named “Chord” as an example.

Figure 2.11: Chord Structure

The Chord system maintains a hash function to associate data nodes with an integer key. In this figure,
there are n = 16 keys in the system. The darker circles are peers that already joined the Chord. Node 1 is
responsible for storing data {0, 1}, node 4 is responsible for storing node {2, 3, 4} When a node joins, it picks
an ID that is a key and is unfilled from 1 to n and then stores keys from the previous node to itself. How
one chooses the key for a joining node can be random or structured. In our current case, when n7 joined, it
became responsible for storing [7, 6, 5]. When a node leaves, the chord structure assigns the leaving node’s
keys to the next node above it. If n7 were to leave, n12 would then be responsible for {12, 11, 10, 9, 8, 7, 6, 5}.
As one can see, joins and leaves are symmetric. Replication or redundancy is used so that when the node
leaves, the system still works.

Given a key in a request, the system has to figure out what node has that key. This can cause request



Lecture 2: February 7 2-9

routing, in which the system will hop around nodes until the key has been found. Fortunately, the search is
actually fast, with a provided key, the system has to look up the value in the distributed hash table. The
hash table is provided by the distributed hash table (DHT) algorithm. P2P architectures are not as reliable
as client-server architectures, as peers can join and leave the network without advance notice. A technique
called “consistent hashing” ensures the DHT is fault tolerant.

More details about Chord can be found here:
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

Question (Student): What happens when a peer goes offline? Answer (Instructor): In a client-server
architecture, we assume the server is reliable, but here, the peer is inherently unreliable. If a node goes down,
the system needs to handle repartitioning the responsibility of file owners.

2.3.1 Content Addressable Network (CAN)

Figure 2.12: CAN Structure, with (b) showing a join procedure

Content Addressable Network (CAN) is another P2P system. As opposed to Chord, however, CANs are
generalized versions of Chord, i.e., they use a d-dimensional coordinate system. To make illustrations easier,
we will set d = 2 for the rest of this section. For example, we can have a tuple containing a file name and
a file type which would require a two-part key for the two-part attribute. Here, each piece of content in a
CAN has 2 identities: < id.x, id.y > or <file name, file type>. For example, two files named “Foo” may
have different file types such as .jpg and .txt.

In the figure above, each dot is a node, meaning that each node is responsible for a rectangular partition of
the coordinate space. The user can have a more fine-grained query in this structure. The x-axis and y-axis
are showing normalized values of the keys from 0 to 1. If a node joins, it chooses a random (x, y) coordinate
and splits the box (i.e. a specific coordinate space) that it is in with the existing node. A node leaving is
more difficult, as the merging of 2 rectangles is not always a rectangle. If a node leaves, the system must
partition that rectangle to merge it with other already present rectangles. Consistent hashing again ensures
the correct handling of the hash when nodes exit.

Note: Remember that the specific example here shows 2 dimensions, but CAN could have any d-dimensional
coordinate system.

Note: In Chord, one can also represent the <file name, file type> attribute, but this would require concate-



2-10 Lecture 2: February 7

nating the 2 keys into one.

2.3.2 Unstructured P2P Systems

Rather than adhering to some topological protocol such as a ring or a tree, unstructured topologies are
defined by randomized algorithms, i.e., the network topology grows organically and arbitrarily. Each node
picks a random ID and then picks a random set of nodes to be neighbors with. The number of nodes is
based on the choice of degree. If k = 2, it means the new node will randomly link to 2 existed nodes and
establish logical connections. When a node leaves, the connections are severed and any remaining nodes can
establish new links to offset the lost connections.

Without structure, certain systems can become more complicated. For example, a hash table key lookup
may require a brute force search. This floods the network, and the response also has to go back the way
it came through the network. We observe that the choice of degree impacts network dynamics (overhead
of broadcast, etc.). The unstructured notion of such P2P systems framed early systems, but newer systems
have more structure in order to reduce overhead.

Figure 2.13: Search in Unstructured P2P System

From the figure above, we see that search in an unstructured P2P system is done by propagating through the
graph as seen in the above figure. Here, a query (Q) is passed to node A, which is then propagated through
the network as each node queries its neighbors. Eventually, the signal is backpropagated to the sender. This
can easily flood the system as mentioned above, so one can create a hop count limit to reduce unnecessary
traffic. Each time the query is passed to a neighbor, the hop count is decremented. Upon reaching 0, the
node will simply return not found.

2.3.3 SuperPeers



Lecture 2: February 7 2-11

Figure 2.15: Graph with SuperPeer Structure

A small modification to the completely unstructured P2P system allows for much more efficient communica-
tion and reduces overhead. The P2P graph is partitioned into clusters, where one peer, designated to be the
superpeer, within each cluster can communicate with other peers outside of the cluster. These superpeers
are dynamically elected within each group and should have additional resources to facilitate the increased
communication demand.

The restricted communication reduces unneeded calls to neighbors and prevents the huge amount of broadcast
traffic found in the completely unstructured P2P system. The number of messages should be lower. However,
there may still be a lot of traffic still flooding the network albeit only going through superpeers.

An early versions of Skype was a good example of how superpeers work. It tracked where users were and if
they were logged in from a specific cluster. It was a P2P system, but Skype has now moved to a client-server
architecture instead.

Question (Student): What are some more examples of superpeers? Answer (Instructor): BitTorrent
and P2P backup systems. However, whenever an application is very important, they may not use P2P since
P2P assumes that people are donating resources to make the system work.

Question (Student): Are node link connections static or dynamic? Answer (Instructor): We can’t
assume that neighbors will stay up. The topology is constantly changing so we must assume dynamic
connections and that links with new neighbors will be made.


